Use of Bayesian Networks to Make More Sustainable Food Packaging Choices That Prevent Food Waste

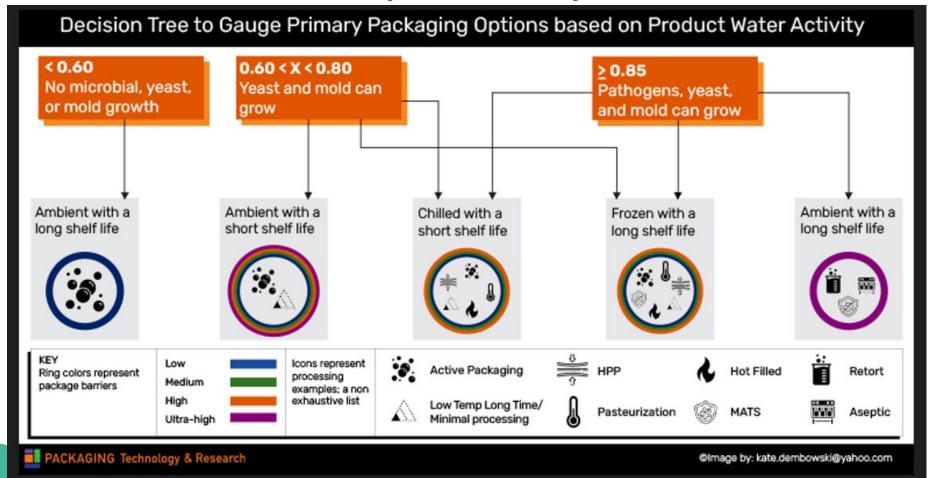
Summer 2023: by Dr. Claire Sand - claire@packagingtechnologyandresearch.com

Key Takeaways

Packaging has farreaching implications beyond shelf life

Bayesian Models link industry and research

Bayesian Models
identify critical aspects
and unintended
consequences to enable
implementation of this
and other use cases


Use case results can be seen in Bayesian Models

Making Decision I

Decision Trees: A Simplified Example

Bayesian models show the future and implications and what is needed

Bayesian Model

Internalities

- Space external to retail
- Planogram issues
- Labor
- · 00S
- Unmet consumer needs for size and product
- · Shifts in value chain drivers

- Externalities
 - Natural disasters (drought, fires, flood, typhoon, hurricane, tornado)
 - Human struggles (virus, famine, political upheaval)
 - Power reliability (outages, internet, production)
 - Variable sustainability pressures (bans, taxes, policies)

- More sustainable food system
- · Less food waste
- Greater Resilience
- Optimized costs

Bayesian model history and theory

- Bayesian belief network (BBN) also Bayesian network, is a type of probabilistic reasoning graphical network based on Bayesian theorem
- The method was first proposed by Judea Pearl in 1986
- Bayesian formula application into the network problem can significantly simplify the problem, hence, can be applied to solve real-world complex problems
- Early BBNs only used knowledge from experts in specific fields. Now, data diversification can turn continuous data streams into characterizing the problems node relationships
- BBN supports fault diagnosis and reliability analysis

Bayesian model history and theory

Bayesian networks are probabilistic graphical models representing system variables, and their conditional dependencies in a Directed Acrylic Graph and are composed of three elements:

- 1. A set of nodes representing management system variables
- 2. A set of links showing causal relationships between these nodes
- 3. A set of probabilities assigned to each node characterizing a belief that a node will be in a specific state as per the the state of the "parent" nodes

Then, conditional Probability Tables (CPT) are constructed.

Bayesian models translate industry needs into parameters

Much of academic research is not applicable to industry needs

Bio-derived films that compete against bPE and bPET are an example

Using Bayesian models, parameters that need to be achieved, these films are better able to find a niche

Examples

- Edible barrier for raw pet food company
- Intelligent packaging for frozen vegetable supplier to QSRs
- Active packaging example with bread



Method I

Use case scenario

- This use case addresses what is considered when switching to a better barrier
- Bakery considering converting to metalized film from OPP
- Lower cost due to high oil prices and excess metalized capacity
- Shelf life models show this will increase shelf life from 60 to 370 days

Method I

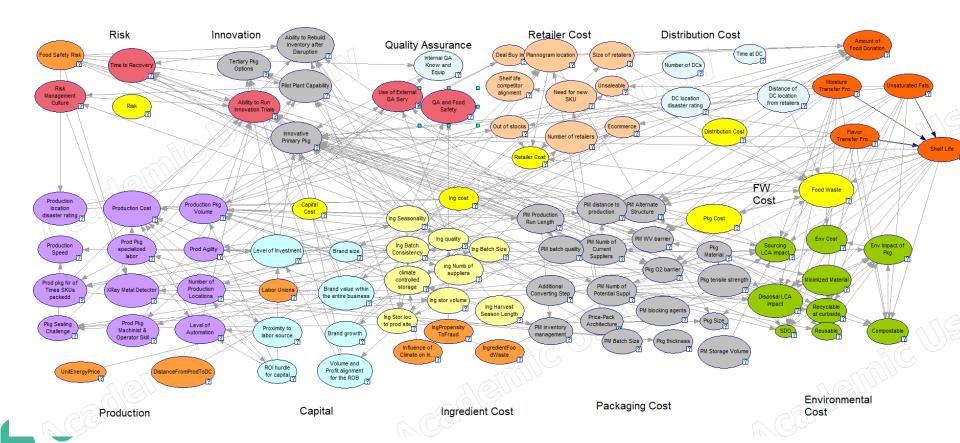
Defined Parent – Child relationships

PM Production Run Length		Prod Pkg volume					
PM Alternate structure		moisture transfer	flavor transfer	Shelf life	Unsaturated	Xray metal	Pkg material
		from and within	from and		fats	detector	
		product	within product				
PM # of current suppliers		Prod Pkg volume	Food safety risk	Pkg material			
PM # of potential suppliers		Food safety risk	Pkg material				
PM distance to production		Number of current	PM Production				
		suppliers	run length				
PM inventory management		Prod Pkg volume	PM Production				
			run length				
Pkg thickness		X-Ray metal	Prod Pkg #				
		detector	times SKU				
PM batch quality		PM Production run	packed				
,		length					
Pkg WV barrrier		Food safety risk	moisture	flavor transfer	Unsaturated	Tertiary Pkg	Pkg material
			transfer from	from and	fats	Options	
Pkg O2 barrier			and within flavor transfer	within product	Unsaturated	Tertiary Pkg	Pkg material
The Oz Burrer			from and	risk	fats	Options	I ng marcina
			within product			, ·	
Additional converting step		Unsaturated fats	flavor transfer				
			from and within product	transfer from			
Pkg material	CF		WILLIIII DIOOUCL	and within			
Pkg Tensile Strength		Pkg Material					
Pkg Size		Plannogram location	Shelf life	Price-pack architecture			
Pkg Cost		Food Waste					

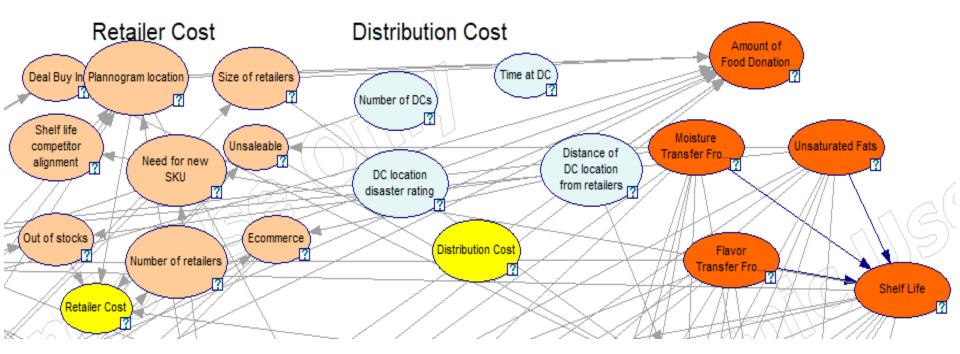
Prod Pkg volume	low		high						
PM Production Run Length		0.5		0.5					
low		0.5		0.5					
high									
Pkg material	low		low		low		low		low
Xray metal detector	low		low		low		low		low
Unsaturated fats	low		low		low		low		low
Shelf life	low		low		low		low		high
flavor transfer from and within prod	low		low		high		high		low
moisture transfer from and within p	low		high		low		high		low
PM Alternate structure									
yes		0.5		0.5		0.5		0.5	
no		0.5		0.5		0.5		0.5	
Pkg material	low		low		low		low		high
Food safety risk	low		low		high		high		low
Prod Pkg volume	low		high		low		high		low
PM # of current suppliers									
low		0.5		0.5		0.5		0.5	
high		0.5		0.5		0.5		0.5	
Pkg material	low		low		high		high		
Food safety risk	low		high		low		high		
PM # of potential suppliers									
low		0.5		0.5		0.5		0.5	
high		0.5		0.5		0.5		0.5	
PM Production run length	low		low		high		high		
Number of current suppliers	low		high		low		high		
PM distance to production									
low		0.5		0.5		0.5		0.5	
high		0.5		0.5		0.5		0.5	
PM Production run length	low		low		high		high		

Method I

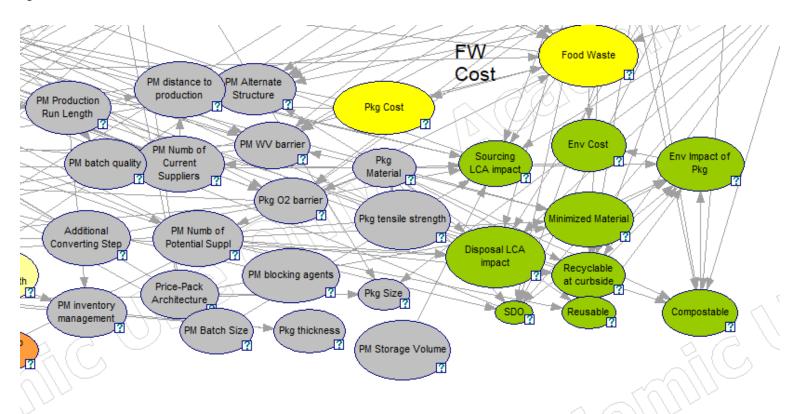
Use case scenario – Defined Parent – Child relationships


- Quality Assurance
- Environment
- Post Consumer Package Handling
- Food Waste
- Risk
- Innovation
- Food Safety

- Marketing Distribution
- Retailer
- Packaging Converters
- Ingredient supplier
- Package properties
- Production
- Capital Investment

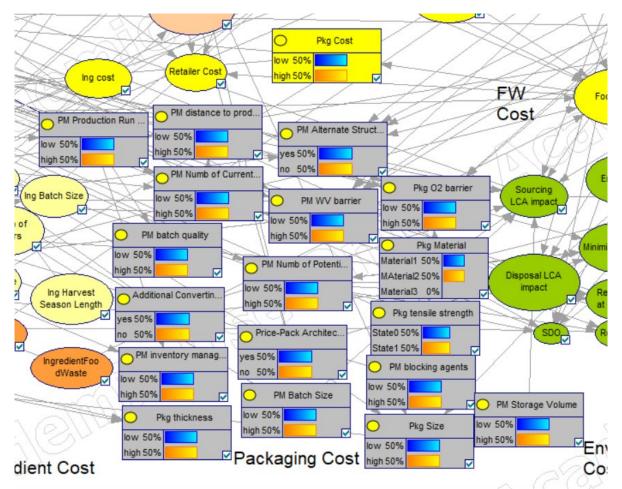


Implications



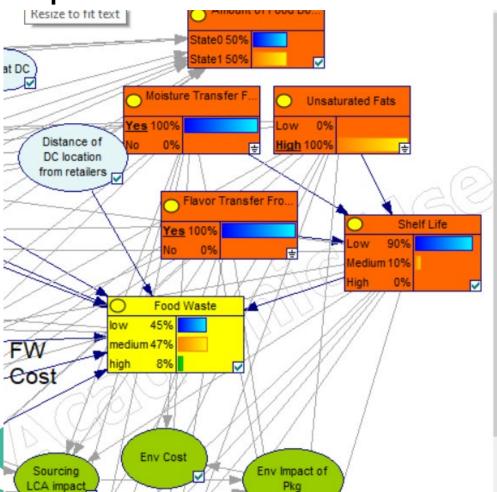
Implications

Implications



Packaging Cost

Environmental Cost



Bayesian modeling showed implications

Implications

Parents

Ingredient food waste	Low	High
Number of retailers	Low	High
Size of retailers	Low	High
Deal buy in	Yes	No
DC location disaster rating	Low	High
Distance from production locatio	Near	Far
Production energy cost	Low	High
Production agility	Low	High
Production location disaster ratin	Low	High
Ing climate influence		
Production energy cost	Low	High
Shelf-life competitor alignment	Low	High
Unsaleable	Low	High
Shelf life	Low	High

Food Waste

Key Takeaways

Packaging has farreaching implications beyond shelf life

Bayesian Models link industry and research

Bayesian Models
identify critical aspects
and unintended
consequences to enable
implementation of this
and other use cases

Use case results can be seen in Bayesian Models

Thank You

Reach out to connect for a virtual coffee

Dr. Claire Sand

Founder & Owner

Adjunct Professor, Michigan State University and CalPoly

Best Practices in Applying the Value Chain to Remove Chemicals of Concern in Food Packaging - Presented by Dr. Claire Sand