ECONOMICS OF FOOD WASTE REDUCTION AS A FUNCTION OF PACKAGING SOLUTIONS:

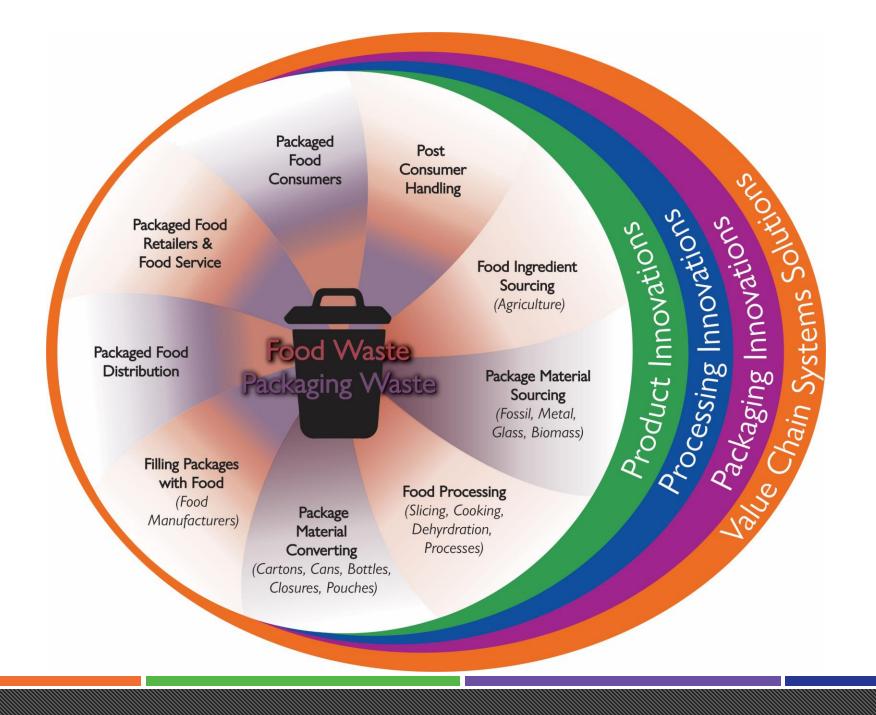
BUILDING THE BUSINESS CASE FOR PACKAGING SOLUTIONS TO FOOD WASTE

PRESENTED BY CLAIRE KOELSCH SAND, PH.D.

OWNER:

PACKAGING TECHNOLOGY AND RESEARCH LLC. ADJUNCT PROFESSOR: UNIVERSITY OF MINNESOTA MICHIGAN STATE UNIVERSITY CALPOLY

CREATED FOR



INNOVATIONS IN FOOD PACKAGING Shelf Life and Food Safety 8-10 Oct 2019, Munich, Germany

About PTR | Actionable innovation to reduce food waste with sustainable packaging solutions

Approach

	Ę		
The future of more innovative food packaging is complex, enchanting, and	Innovation requires a business case	Gaps can be found	Value chain connections build in agility for future
promising Numerous choices result in catharsis and focus is needed	A rational, defensible, and achievable strategy is needed	Technology can be used to enable better alignment between consumer needs and market delivery	Hesitancy can be reduced with more levers to drive switching

About PTR | Dr. Claire Sand - Owner

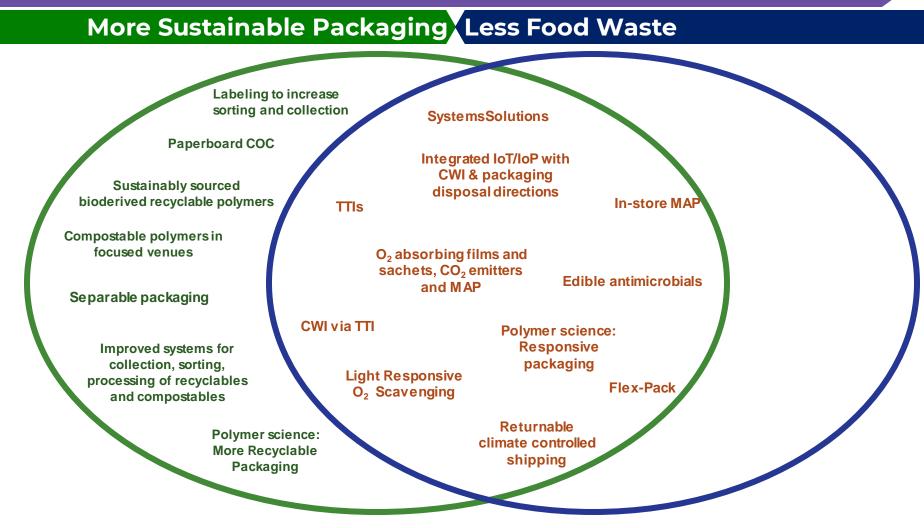
Learn from PTR with presentations and articles at <u>http://www.packagingtechnologyandresearch.com/thought-leadership.html</u>


Executive Summary

ABOUT THIS PRESENTATION

30 min discussion on drivers to reduce food waste

2 Drivers for Less Food Waste



Building the business case for More Sustainable Packaged Food

Nexus of More Sustainable Packaging and Less Food Waste

More Sustainable Packaged Food = Least Food Waste with the Most Sustainable Packaging

More Sustainable Packaged Food

Defining Sustainability

More Sustainable Packaged Food

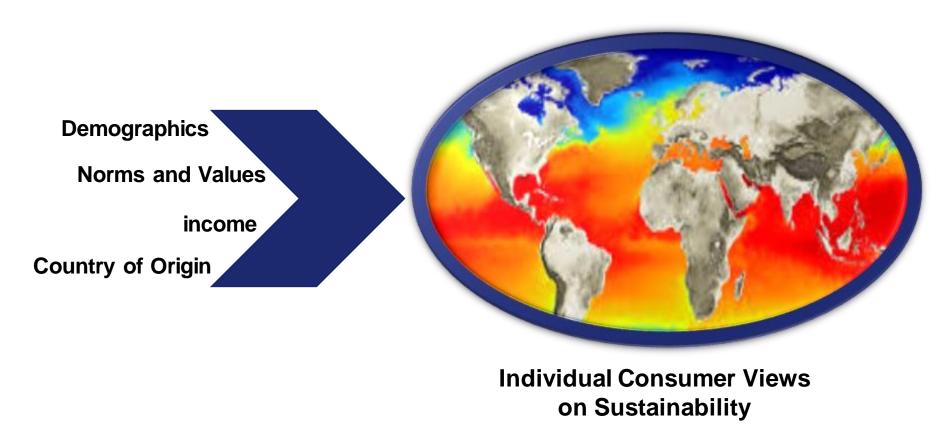
The food industry is not considered wholly sustainable now

the development that meets the needs of the present without compromising the ability of future generations to meet their own needs

Brundtland Report UN (1987)

Consumer Behavior Theory can Guide

More Sustainable Packaged Food

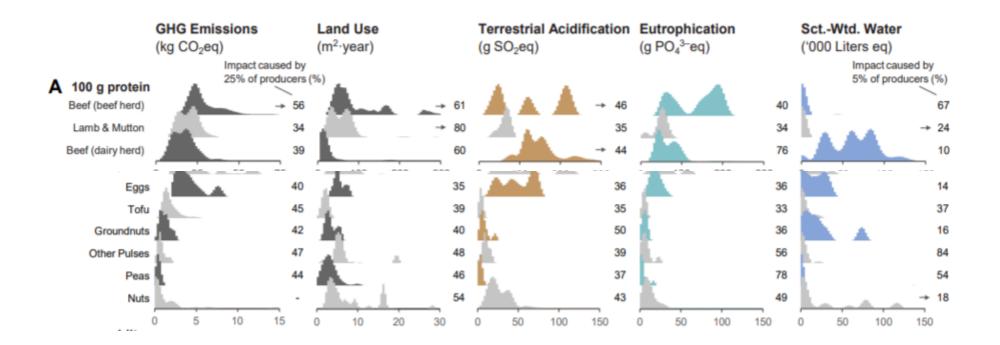

Consumers want a more sustainable food supply

Value-action gap	Metamotivation	Barriers to Sustainable Behaviors
Theory of Reasoned Action & Theory of Planned Behavior	Spillover Effect	Social Desirability Bias

Consumers Driven to Sustainability Differently

More Sustainable Packaged Food

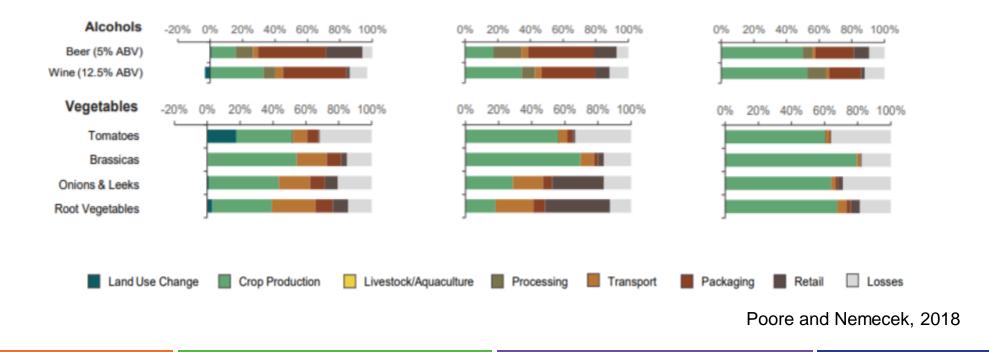
Many drivers with many solutions


Building the business case for More Sustainable Packaged Food

Drivers for Less Food Waste

Consumers cannot see many Drivers to Reduce Food Waste

Less Food Waste


Consumers not directly impacted by environment they cannot see

Consumers have Strong Connections to Environment

Less Food Waste

- Connection to the impact of food & packaging on the environment is strong
- Consumers need information to drive their decision making
- Now it is smoke and mirrors in food as well as packaging

Economic Drivers to Reduce Food Waste Differ

Less Food Waste

Differing drivers are due to economic imbalance

- Brand Owners
 - Have made major progress in economically driven food waste reduction from farm to retail
 - Have limited economic drivers reduce consumer-derived food waste
 - Gap in clear information filled by non-fact based misinformation
- Extending the value chain to Consumers who waste 30% of <u>packaged</u> food is needed
- Link to convenience and adding value of food waste reduction
 - Drivers on consumer sustainability
 - Drivers on Nutrient waste
 - WTP for less nutrient waste and less money lost on spoiled food
 - "Easy to empty" connects with consumers due to food waste reduction

Business and social drivers are increasing to Reduce Food Waste

Less Food Waste

12 drivers on food systems for change, none connect to food waste (Bene, 2019)

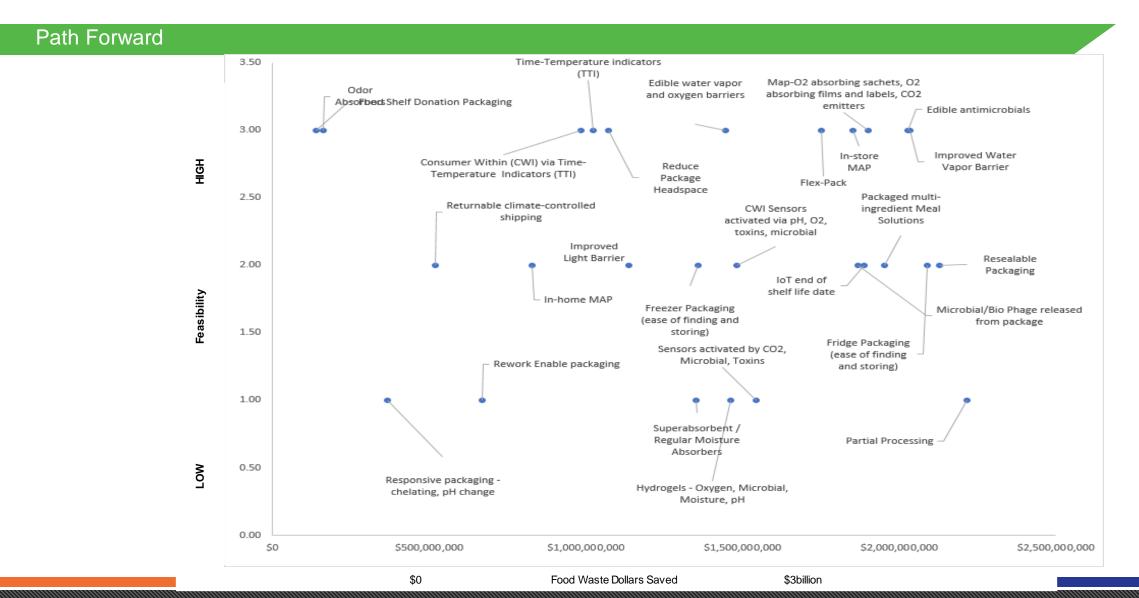
- Shared value ٠
- Social welfare ٠
- Less climate change
- Food equity
- Environmental capital

Food Recovery Hierarchy Most Preferred

Source Reduction Reduce the volume of surplus food generated

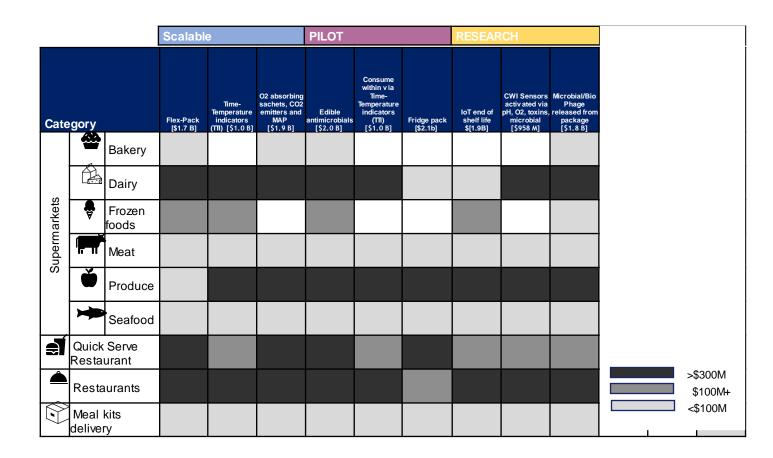
Feed Hungry People Donate extra food to food banks, soup kitchens and shelters

> **Feed Animals** Divert food scraps to animal feed


Industrial Uses

Provide waste oils for rendering and fuel conversion and food scraps for digestion to recover energy

> Composting Create a nutrient-rich soil amendment


Landfill/ Incineration Least Preferred Last resort to disposal

Results – Snapshot of Total Food Waste Reduction as a function of Feasibility

Results – Impact of Package Solutions

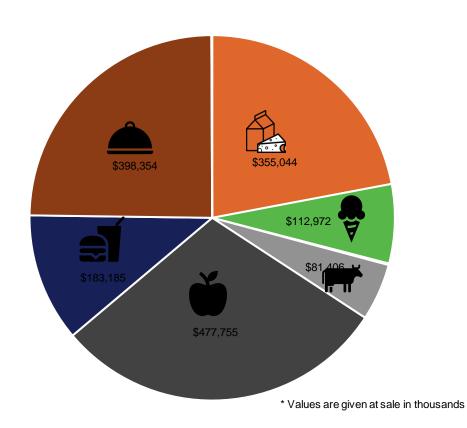
Reduce Food Waste

Scalable Packaging Solutions to Food Waste

Reduce Food Waste

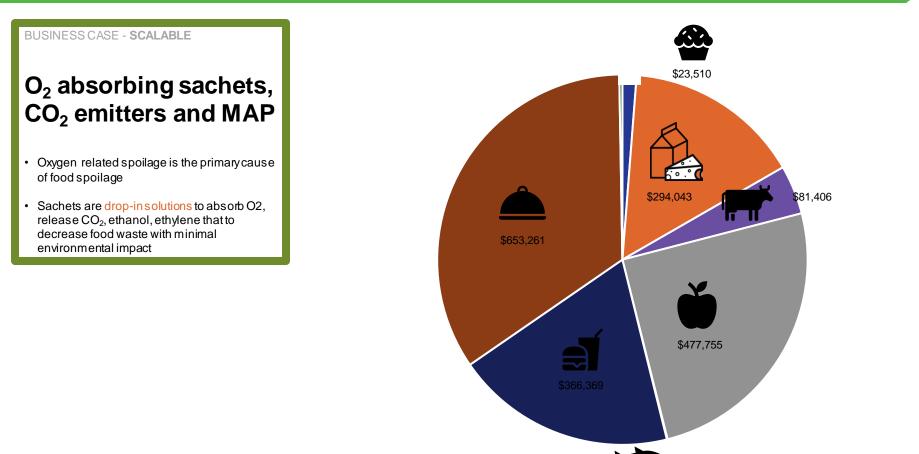
Scalable Solutions	Reduced Food Waste for Consumers	Reduced Food Waste for Supermarket	Reduced Food Waste for Restaurant	Total Reduced Food Waste	Total feasability to Reduce more Food Waste
Resealable Packaging	\$1,095,133,320	\$450,491,688	\$581,538,462	\$2,127,163,470	
Improved Water Vapor Barrier	\$1,034,162,554	\$418,952,475	\$581,538,462	\$2,034,653,490	
Map-O2 absorbing sachets, O2 absorbing films and labels, CO2 emitters	\$884,293,744	\$433,883,841	\$581,538,462	\$1,899,716,046	
Flex-Pack	\$896,359,617	\$273,467,945	\$581,538,462	\$1,751,366,023	
Edible water vapor and oxygen barriers	\$446,254,803	\$419,899,801	\$581,538,462	\$1,447,693,066	
Improved Light Barrier	\$366,241,082	\$188,140,852	\$581,538,462	\$1,135,920,396	
Reduce Package Headspace	\$887,174,809	\$185,792,449	\$0	\$1,072,967,258	
Time-Temperature indicators (TTI)	\$219,276,551	\$224,021,084	\$581,538,462	\$1,024,836,096	
Odor Absorbers	\$100,696,804	\$60,808,515	\$0	\$161,505,319	

Low total feasability in reducing more food waste	
Medium total feasability in reducing more food waste	
High total feasability in reducing more food waste	


TTIs

Reduce Food Waste

BUSINESS CASE – SCALABLE


TTIs

- Degradative food reactions are a function of both time and temperature and provide an accurate depiction of product safety and quality to decrease food waste
- TTIs provide direction for sale at retail as well as for consumption after purchase by consumers with minimal environmental impact

O2 Absorbing Sachets, CO2 Emitters and MAP

Reduce Food Waste

* Values are given at sale in thousands

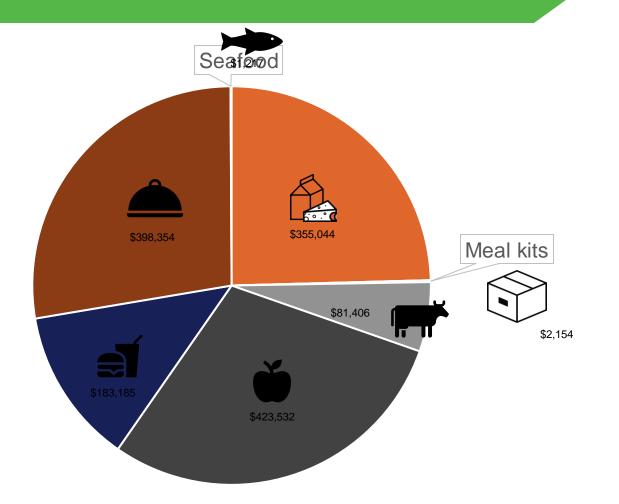
\$1,217

Pilot Packaging Solutions to Food Waste

Reduce Food Waste

Pilot Solutions	Reduced Food Waste for Consumers	Reduced Food Waste for Supermarket	Reduced Food Waste for Restaurant	Total Reduced Food Waste	Total feasability to Reduce more Food Waste
Fridge Packaging (ease of finding and storing)	\$1,054,707,290	\$454,202,956	\$581,538,462	\$2,090,448,708	
Edible antimicrobials	\$969,781,136	\$477,741,560	\$581,538,462	\$2,029,061,158	
Packaged multi-ingredient Meal Solutions	\$916,805,691	\$456,279,032	\$581,538,462	\$1,954,623,185	
In-store MAP	\$837,405,046	\$433,883,841	\$581,538,462	\$1,852,827,349	
Freezer Packaging (ease of finding and storing)	\$720,152,591	\$56,709,461	\$581,538,462	\$1,358,400,513	
Consumer Within (CWI) via Time-Temperature Indicators (TTI)	\$315,089,591	\$343,713,481	\$326,630,769	\$985,433,841	
Returnable climate-controlled shipping	\$472,097,278	\$46,406,998	\$0	\$518,504,276	
Food Shelf Donation Packaging	\$83,701,725	\$54,872,330	\$0	\$138,574,055	

Low total feasability in reducing more food waste	
Medium total feasability in reducing more food waste	
High total feasability in reducing more food waste	


CWI via TTI

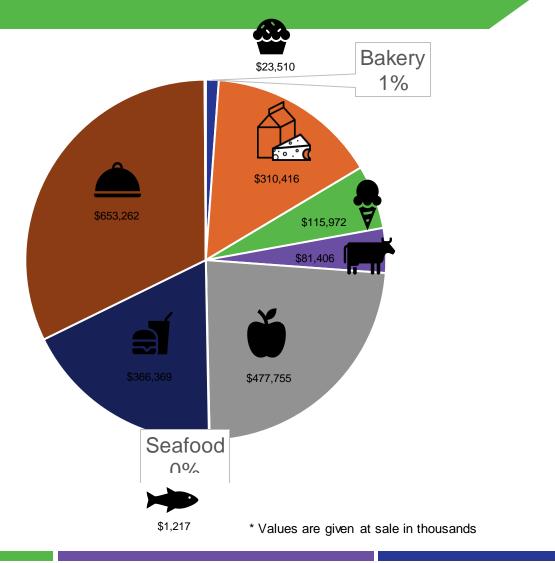
Reduce Food Waste

BUSINESS CASE - PILOT

CWI via TTI

- Most degradative food reactions are a function of both time and temperature and provide an accurate depiction of product safety and quality to decrease food waste
- CWI TTIs provide direction for the actual date of consumption after purchase by consumers with minimal environmental impact

* Values are given at sale in thousands

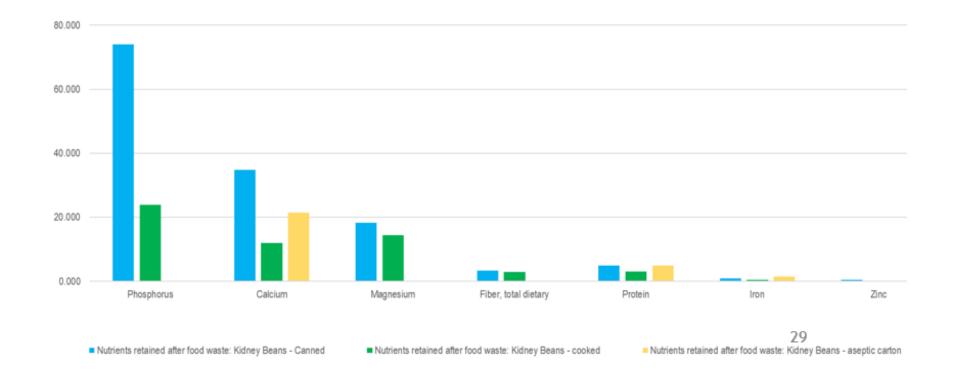

Edible Antimicrobials

Reduce Food Waste

BUSINESS CASE - PILOT

Edible Antimicrobials

- Microbial growth is a major food safety issue
- Edible (FDA & EU approved) antimicrobials can eliminate and keep microbial activity low extending the shelf life and making foods safer with less traditional packaging



Substantial Research Investment-Packaging Solutions to Food Waste

	IoT end of shelf life date	Sensors activated by CO2, Microbial, Toxins	Superabsorb Regular Rew Moisture Ena Absorbers packa		ole	
Partial Processing	Microbial/Bio Phage released from package	Hydrogels - Oxygen, Microbial, Moisture, pH	CWI Sensors activated via pH, O2, toxins, microbial	In- home MAP	Resp pack - chel	

Nutrient Waste is Relevant to Consumers

Less Food Waste

Canned kidney beans retain more nutrients when food and nutrient waste are combined

Consumer/Market Drivers and Direction for More Sustainable Packaged Food

Direction-Consumers

Path Forward

- Engage with consumer meaningfully on sustainability
 - Buy-local
 - Local
 - Mailing in empty packaging is not more sustainable than current options and we need local infrastructure
 - Flexitarian
 - Global impacts more clearly understood
- Realize that Consumers see packaging as a window into a Brand's positioning on sustainability
- Extend value chain beyond Retail to Consumers at Food Banks and Food Donations
 - Food waste from Retail to Food Banks is high

Direction-Leadership

Path Forward

- Leadership is needed for uniform assessment tools
 - LCAs and DEA on product and package
 - LCAs and DEA on packaging versus "wag the dog" material switches
- Respect Consumer need for clear communication
 - Clarity drives change
 - Voluntary carbon-footprinting (UK) and How2Recycle labels, and EPR fees guide
 - Universal (nonculture-specific) to identify more sustainable packaging
- Employ value chain linked intelligent packaging
 - Decrease time and effort to recycle on consumer recycling rate
 - Link food track-&-trace with consumer incentives for proper package disposal

Direction-Leadership

Path Forward

- SystemsSolutions
 - Rethink who needs what shelf life
 - Urban vs Rural specific packaging
 - Change packaging consumers have to handle
- Category-wide initiatives on food waste reduction and more sustainable packaging
- Use Food Service as means to guide Consumers
 - Food waste reduction at Consumer and BOH & FOH Food Service level
 - Opportunity and value drivers are higher

ECONOMICS OF FOOD WASTE REDUCTION AS A FUNCTION OF PACKAGING SOLUTIONS:

BUILDING THE BUSINESS CASE FOR PACKAGING SOLUTIONS TO FOOD WASTE

PRESENTED BY CLAIRE KOELSCH SAND, PH.D.

OWNER:

PACKAGING TECHNOLOGY AND RESEARCH LLC. ADJUNCT PROFESSOR: UNIVERSITY OF MINNESOTA MICHIGAN STATE UNIVERSITY CALPOLY

CREATED FOR

INNOVATIONS IN FOOD PACKAGING Shelf Life and Food Safety 8-10 Oct 2019, Munich, Germany